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Nonlinear phenomena in thermophysical and chemical-technology processes are considered in the
context of nonlinearity, instability, nonuniqueness, nonstationarity, and irreversibility. The perturba-
tion frequency (phase)-to-amplitude ratio is the governing parameter of the nonlinear interaction of
perturbations that are described by the proposed general nonlinear parabolic equation. The non-
linearity of this ratio characterizes turbulence, while its linearity characterizes self-organization. It is
shown that chaotic conditions can be self-organized under the action of "white noise," which favors
the system getting into the domain of attraction of a stable node. The mechanism of the occurrence
of turbulence is substantiated.

Intense heat- and mass-exchange processes in chemical-technology and heat-exchange devices are ac-
companied by the development of unstable conditions in separate subsystems: laminar conditions of flow of
liquid films change to wave and turbulent conditions; Taylor instability develops in bubbling apparatuses;
Marangoni instability appears on the liquid-phase surface in mass-exchange apparatuses; convection currents
are formed in nonuniformly heated volumes. In most cases, it is impossible to prevent the development of
instability, and sometimes it is not expedient, since the resulting instabilities intensify the heat- and mass-ex-
change processes.

The development of instability leads to the appearance of self-ordered monochromatic, low-mode cha-
otic, and multimode turbulent conditions [1−3].

The chaotic and turbulent conditions are characterized by considerable spreads in hydrodynamic and
heat- and mass-exchange parameters. The probability that the system will attain emergency operating condi-
tions in the case of chaotic instability is higher than in the case of its other types.

The monochromatic conditions combine high intensity of heat- and mass-exchange processes, which
is caused by the ordered convective motion of a liquid, and insignificant spreads in heat- and mass-exchange
parameters and stability to perturbations. In order to prevent emergency situations in highly efficient proc-
esses, it is worthwhile to use self-organizing conditions; for this purpose, one must investigate the conditions
of occurrence and the laws of long-term development of unstable regimes, carry out their classification, and
find conditions for the change of the chaotic and turbulent conditions to self-organizing ones.

Modern nonlinear dynamics experiences fundamental changes. Unpredictable and chaotic-looking ran-
dom vibrations appear in nonlinear dynamic systems (described by nonlinear equations with regular (nonran-
dom) coefficients) that execute vibrations under the action of regular external forces of a periodic and
especially a nonperiodic nature. In other words, solutions of these nonlinear equations depend strongly on
initial conditions. Another property of chaotic vibrations is that they "forget" about the initial conditions. Cha-
otic dynamics (or dynamic chaos), which is characteristic of all the nonlinear phenomena of inanimate and
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animate nature, caused a revolution in modern nonlinear dynamics. Until recently, three types of dynamic
motion were known: equilibrium motion, periodic (or the limiting cycle), and quasiperiodic motion. These
states of dynamic systems on a phase plane were called attractors, since in damping of motion or in the case
of stability loss the system "is attracted" to one of the above-mentioned states. Chaotic vibrations and their
nonlinear interactions produced a new type of motion that is related to the state called the "strange" attractor
thanks to the works of Ruelle, Takens, and Lorentz. 

The appearance of attractors of different form is associated with the nonlinear interaction of evolving
perturbations. Several models are available (the Ginzburg−Landau, Swift−Hohenberg, Newell−White-
head−Segel, and Van der Pol models) that describe bifurcation processes in nonlinear systems. However,
when these models are used many problems which are associated with account for various types of nonlinear
interactions between perturbations still remain to be solved.

General Nonlinear Parabolic Equation (GNPE). A large class of unstable thermophysical, physico-
chemical, chemically reacting, electrochemical, physical, biological, and hydrodynamic nonlinear processes
are described by the well-known systems of nonlinear partial differential equations 

∂ϕ
∂t

 + N (ϕ) +  ∑ 

i=1

2

Qi (ϕ) 
∂ϕ
∂xi

 +  ∑ 

ij=1

2

Mij (ϕ) 
∂2ϕ

∂xi ∂xj
 = 0 , (1)

where ϕ = Nϕ1...ϕnN
T is the real vector determined in the region D = {(t, x1x2)  t ≥ 0, −∞ < xi < ∞}, N =

�N1...NnN
T, Q and M are n × n matrices, and M12 = M21. The first two terms in Eq. (1) are well-known

equations of kinetics and biophysics, while, with the appropriate concretization of the form of the coeffi-
cients, they are the equations of the kinetics of Belousov−Zhabotinskii-type reactions. The first, second, and
fourth terms describe the same reactions with diffusion and also heat conduction with nonlinear sources
(sinks) of energy. In complete form, equations of the type (1) characterize various hydrodynamic phenomena
and can be rearranged to a system of quasilinear differential equations with source (sink) terms that is inves-
tigated in [4]. Generally, this system can describe combined processes, for example, convective heat- and
mass-exchange, since for the vector N restrictions are not imposed on the nature of a substance.

Let the system of equations (1) allow the stationary solution ϕ = ϕ0, which in an open system, as a
result of an external action or in a random way, loses stability for certain values of the parameters. In system
(1), perturbations belonging to a continuous spectral band of wave numbers are excited and grow in the su-
percritical region.

We assign the perturbed solution of system (1) in the form

ϕ = ϕ0 + ϕ~ . (2)

The problem of nonlinear development of perturbations from the continuous spectral band of wave
numbers is solved using wave packets [5−10]

ϕ~ =     ∫ 
k10−∆k1

k10+∆k1

          ∫ 

k20−∆k2

k20+∆k2

    F (k1, k2) exp i (k1x1 + k2x2 − ωt) dk1dk2 + com. con , (3)

where k10 and k20 are the centers of the wave packet along the x1 and x2 axes, respectively, ∆k1 and ∆k2 are
the wave-packet widths along the x1 and x2 axes, respectively, and ω = ωr + iωi is the complex frequency;
com.con are the complex conjugate quantities

Under the assumption that
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∆k1

k10
 = o (ε) ;   

∆k2

k20
 = o (ε) ;   

ϕ~

ϕ0
 = o (ε) ;   (∂ωi

 ⁄ ∂k) ⁄ ωi=0 = o (ε) ;   ε << 1 , (4)

the spectrally narrow wave packet will be represented in the form of a quasimonochromatic wave

ϕ~ =     ∫ 

k10−∆k1

k10+∆k1

          ∫ 

k20−∆k2

k20+∆k2

    F (k1, k2) exp i (k1x1 + k2x2 − ωt) dk1dk2 + com. con = A exp i (k10x1 + k20x2 −

− ω (k10, k20) t) + com. con = a (εt, ε2t, εx1, εx2) exp iθ (εt) exp i (k10x1 + k2x2) + com. con , (5)

where

A =  ∫ 

−∆k1

∆k1

    ∫ 

−∆k2

∆k2

  F (k10 + δk1, k2 + δk2) exp i 



δk1x1 + δk2x2 − 





∂ω
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 δk1t − 





∂ω
∂k2




 δk2t − 

1

2
 




∂2ω
∂k1

2




 (δk1)2 t −

− 
1

2
 




∂2ω
∂k2

2




 (δk2)

2 t − 




∂2ω
∂k1,∂k2




 δk1δk2t




 ∂δk1∂δk2 + o (ε3) =

= A (x11, x21, x12, x22, t1, t2) + o (ε3) . (6)

From Eqs. (5) and (6) it follows that the sum of m harmonics of belonging to the spectrally narrow
wave packet can be represented in the form of quasimonochromatic waves; here the amplitude a and phase θ,
as is obvious from Eq. (5), are functions of slow variables (εt and εx):

t0 = t ; t1 = εt ; t2 = ε2t ; x1 = x10 ; x2 = x20 ; x11 = εx1 ; x21 = εx2 ; x12 = ε2x1 ; x22 = ε2x2 . (7)

We introduce the expansion

ϕ = ϕ0 +  ∑ 

j=1

∞

    ∑ 
l=−∞

∞

   εj Al
 (j) exp il (k1x10 + k2x20 − ωrt0) + com. con , (8)

as well as the following operators which take into account the factor that the processes occur on many scales:

∂
∂x1

 = 
∂

∂x10
 + ε 

∂
∂η1

 + ε2 
∂

∂x12
 ;   

∂
∂x2

 = 
∂

∂x20
 + ε 

∂
∂η2

 + ε2 
∂

∂x22
 ;

∂
∂t

 = 
∂

∂t0
 − ε 

∂ωr

∂k1
 

∂
∂η1

 − ε 
∂ωr

∂k2
 

∂
∂η2

 + ε2 
∂

∂t2
 ; (9)

η1 = ε 



x1 − 

∂ωr

∂k1
 t




 ;   η2 = ε 




x2 − 

∂ωr

∂k2
 t




 ;   Al

 (j) = ||Al1
 (j) ... A1n

 (j) ||t , (10)

where A−l
(j) is the vector that is complex conjugate to Al

(j) and η is the wave coordinate.
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Thus, the reduction of the system of equations (1) to the equation for the amplitude of a nonlinear
perturbation is carried out in a comprehensive manner, i.e., using the wave packets (3), the methods of many
scales (9), and modification of the Mandel’shtam method according to which m harmonic waves with differ-
ent wave numbers and frequencies are rearranged to the form of quasimonochromatic waves with nonlinear
amplitude and phase depending on the slow variables. This idea was used in transforming the spectrally nar-
row wave packet (formulas (5) and (6)). Finally, we used transformation (10), which takes into account the
group velocity of the envelope wave, which is typical for the actual nonlinear dispersion medium.

The nonlinear system of differential equations in partial derivatives in the εth approximation, obtained
after the substitution of expansion (8) into system (1) with allowance for (9) and (10), becomes inconsistent.
For its solvability, it is required that the right-hand side of the system obtained would be orthogonal to any
solution of a homogeneous conjugate system, as was performed previously [5−7]. This difficulty is resolved
by means of another method [10].

With (9) and (10) taken into account, in the system of differential equations obtained after the substi-
tution of (8) into (1) we separate the linear side and denote it by the matrix operator as L, while the remain-
ing nonlinear side is also denoted by the matrix operator of the same system as V. Then the system of
equations obtained can be represented in the form

LX = V , (11)

in which

X = 

























x1

x2

.....

.....
xn

 

























 ;   V = 

























V1

V2
.....
.....
Vn

 

























 ;   L = 

























L11L12 ... L1n

L21 L22 ... L2n

..........

..........
Ln1 Ln2 ... Lnn

 

























 . (12)

Having multiplied the left- and right-hand sides of Eq. (11) by the adjoint matrix L∗ , we obtain

L∗ LX = L∗ V . (13)

The expansion of these matrices in a small parameter ε gives

L = L0 + εL1 + ε2L2 + ε3L3 ;   X = εX1 + ε2X2 + ε3X3 ;   L∗  = L0
∗  + εL1

∗  + ε2L2
∗  + ε3L3

∗  ;

V = ε2V2 + ε3V3 .

We collect the terms for identical εk, k = 0, 1, 2, and 3:

for ε1 :  L0
∗  L0 X1 = 0 ;

for ε2 :  (L0
∗  L1 + L1

∗  L0) X1 + L0
∗  L0 X2 = L0

∗  V2 ;

for ε3 :  (L0
∗  L2 + L1

∗  L1 + L2
∗  L0) X1 + (L0

∗  L1 + L1
∗  L0) X2 + L0

∗  L0 X3 = L1
∗  V2 + L0

∗  V3 ;

for ε4 :  ..... .

(14)
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Eliminating successively the secular terms of different approximations in system (14), we separate the
secular terms of the third approximation. This procedure makes it possible to obtain the following equation
for the amplitude of the envelope wave in the third approximation:

∂A0

∂t2
 + 

∂ωr

∂k1
 
∂A0

∂x12
 + 

∂ωr

∂k2
 
∂A0

∂x22
 + 

i

ε
 
∂ωi
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 + 

i
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∂ωi
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− 
i

2
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∂2ωi
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2
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∂η1
2  − 

i

2
 




∂2ωr

∂k2
2  + i 

∂2ωi

∂k2
2




 
∂2A0

∂η2
2  −

− i 




∂2ωr

∂k1∂k2
 + i 

∂2ωi

∂k1∂k2




 

∂2A0

∂η1∂η2
 + (β1 + iβ2)  A0 2 A0 = 0 , (15)

where β1 and β2 are the Landau constants; here β1 characterizes the nonlinear damping of perturbations and
β2 characterizes the nonlinear dispersion. These constants can be obtained from the previous approximation.

Substituting into (15) the wave amplitude A0 in the form

A0 = A+ exp i 



δksxs + 





∂ωr

∂ks
 δks + 

1
2

 
∂2ωr

∂ks∂kt
 δksδkt




 t




 ,

where the double subscripts in δksxs indicate the summation, and going from the scaling variables t2, x12, and

x22 to the variables t2, η12 = x12 − 
∂ωr

∂k1
 t2, and η22 = x22 − 

∂ωr

∂k2
 t2 for the amplitude A+ of the wave packet,

whose center is shifted by δk1 and δk2 from the neutral-stability curve, we obtain a general two-dimensional
nonlinear parabolic equation in the form

∂A+

∂t2
 + 
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∂ωi
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∂2A+
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 =

= 
ωi

ε2 A+ − (β1 + iβ2)  A+ 2 A+ . (16)

Now we write (16) in dimensionless variables:

η10 = η1 √
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2















 ;   η20 = η2 √









2ωi
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 ;   τ = 
t2ω1

ε2  ;   A = A+ √ε2βi

ωi

 ; (17)

then
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∂A
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 . (19)

Analysis of Numerical Solutions of the General Nonlinear Parabolic Equation. The dimensionless
numbers (19) have a simple physical meaning: α1j characterizes the ratio of the dispersion of the group ve-
locity in the jth direction to the dispersion of the increment; α3j, the deviation of the center of the wave
packet in the jth direction from the harmonic of the maximum increment; α2 characterizes the nonlinear de-
pendence of the phase (frequency) on the amplitude, i.e., nonlinear dispersion.

Equation (18) describes the evolution of the envelope wave that appeared as a result of the nonlinear
interaction of perturbations assigned in the form of a wave packet. As particular cases, Eq. (18) gives the
well-known relations from [11, 12].

To characterize the behavior of the dynamic systems, we used the Lyapunov exponents, the Kolmo-
gorov−Sinai entropy, and the Poincare′  mapping.

For example, for conservative systems of plasma physics, nonlinear optics, and the hydrodynamics of
an ideal liquid with ωi = βi = 0, Eq. (18) is reduced to the well-known Schro

..
dinger nonlinear parabolic equa-

tion [11, 12].
The Lyapunov exponents defined for nonlinear dynamic systems by the method of [13] are the quan-

titative characteristic of the attractor. For system (18), the Lyapunov exponents were in the space an and θn:

λn (an0, θn0) =  lim
τ→∞

   
1
τ

 ln ||u (τ, an0, θn0) || ,

where u(τ, an0, θn0) is the vector of sensitivity functions (tangential flow). Moreover, if all the Lyapunov
exponents λn are negative, the system is constricted in all directions of an and θn, and the stable node or
stable focus is the attractor in the space an and θn. The vanishing of one of the Lyapunov exponents in the
case of negativeness of all the remaining exponents indicates the presence of a limiting cycle. The equality
of n Lyapunov exponents to zero when the remaining exponents are negative corresponds to the existence of
an n-dimensional torus. The appearance of positive exponents reveals the occurrence of a stochastic attractor.

In addition, in order to characterize the dynamic chaos, we used the Kolmogorov−Sinai entropy. This
metric invariant of dynamic systems was introduced for the first time by Kolmogorov [14] and subsequently
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was developed by Sinai [15]. The measure of the development of turbulence was the positiveness of the met-
ric invariant of dynamic systems that results in the scattering of exponential phase trajectories.

Finally, to characterize the behavior of dynamic systems we also used the Poincare′  mapping.
The complex investigation of these propositions for the quantitative and qualitative characteristic of

nonlinear dynamic systems made it possible to track qualitative changes in the trajectories of these systems
with change in the parameters (19) in the numerical solution of the general parabolic equation (18), i.e., to
investigate bifurcation. Here, in different stages of evolution of the nonlinear interaction of perturbations, cer-
tain sequences of bifurcations leading to a strange attractor showed up, namely, bifurcations that cause inter-
mittency, doubling of the Feigenbaum period, production and failure of a three-dimensional torus, and,
finally, a sequence that results in a homoclinic contour.

Based on the numerical solution of Eq. (18) [5−10], it is established that all the governing parameters
α1j, α3j, and α2, called by us the criteria, affect the behavior of a perturbation; however, the parameter α2 is
of primary importance in rearrangement of the perturbations that determine the appearance of either self-or-
ganization or chaos (turbulence). Account for the influence of α2 and other criteria in Eq. (19) on the nature
of the interaction and development of perturbations allowed us to establish the following laws of occurrence
of self-organization and turbulence (chaos) and of the transition between them in hydrodynamic, thermophysi-
cal, physical, chemically reacting, and biological systems [9, 10]:

Fig. 1. Self-organization of the random field of perturbations of the am-
plitude (a−f) and phase (g−j) in the medium without dispersion (α11 =
α12 = α2 = 0) for τ = 0 (a, g), 0.2 (b, h), 0.6 (c, i), 1.2 (d), 2.0 (e), and
4.8 (f, j). Owing to self-organization, the values of α and θ are constant
at all points of the space.
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1. The linear dependence of the phase or frequency on the amplitude of a perturbation is the neces-
sary condition for self-organization. Degenerate cases of this linear dependence are also possible: the slope or
the free term, or both simultaneously are equal to zero (Figs. 1 and 2).

2. The basic condition for the occurence of turbulence (chaos) is the nonlinear dependence of the
phase for distributed systems or the frequency for nondistributed systems on the perturbation amplitude (Figs.
3 and 4). An increase in the dispersion favors the occurrence of self-organization (Fig. 5).

3. In chaotic and disordered systems, self-organization, coherent structures, and order occur owing to
the nonlinear interaction of perturbations, and conversely.

4. The transition from one type of nonlinear interaction to another and the appearance of the structure
or phenomenon are accompanied by a change in the energy distribution over the spectrum, i.e., by the con-
traction (self-organization) (Fig. 2) or expansion (turbulence) (Fig. 4) of energy over the spectrum. An inter-
mediate state is possible.

The indicated laws are obtained from the analysis of the numerical solutions of Eq. (18) and can be
used for controlling self-organization and turbulence (chaos).

Let us give some examples that characterize the occurrence of self-organization and turbulence.
Figure 1 presents the development of a random field of amplitude and phase perturbations in the me-

dium without dispersion (α11 = α12 = α2 = 0) that leads to self-organization. At the initial instant (τ = 0), the
random field of amplitude and phase perturbations is chosen from the table of random numbers. In the course
of development, condition 1 is used. The characteristics of the wave packet, represented by formula (3),
evolved to a monochromatic envelope wave obtained as a result of the nonlinear interaction of perturbations
(condition 3). In this case, the continuous spectrum of the wave numbers of the wave packet is contracted.
The wave packet evolves to a monochromatic wave (condition 4, Fig. 2).

In the case of the nonlinear dependence of the phase (frequency) on the amplitude, the graph of the
dependence of the perturbation amplitude a takes the form of sharp wedges (Fig. 3). With multimode insta-
bility the perturbations, belonging to the wide band of the spectrum of wave numbers, are excited and grow.
As the multimode turbulence develops, expansion of the wave packet occurs (Fig. 4). The amplitudes sym-
metric relative to the center of the wave packet are not equal to each other. The perturbation energy is rather
uniformly distributed over the spectrum of the excited wave packet.

The trajectories of the initially close systems diverge exponentially. The multimode turbulence devel-
ops in the system.

From Figs. 3 and 4, it follows that a monoharmonic wave was imposed initially during the process
(natural fluctuation interaction) or upon the process (forced interaction). Then, by means of particular interac-
tions, forced or natural ones, condition 2 was satisfied, namely, the phase or the frequency was nonlinearly

Fig. 2. Contraction of the wave packet in the case of occurrence of self-
organization in the medium without dispersion (α11 = α12 = α2 = 0) for
τ = 0 (a), 1.5 (b), 4 (c), 8 (d), and 14 (e).
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dependent on the amplitude. In this case, according to Fig. 4, the spectrum of the wave numbers was ex-
panded. The transition to turbulence occurred, as is evidenced by all the well-known criteria for dynamic
systems.

Thus, condition 4 is obligatory for all transitions that characterize the qualitative changes in the tra-
jectory of dynamic systems, i.e., the transition of the system to self-organization is accompanied by the nar-
rowing of the spectrum, while the transition to turbulence, by the expansion of the spectrum. In both cases,
the transition is accompanied by energy transfer over the spectrum (Figs. 2, 4).

The occurrence of multimode turbulence can be prevented by increasing the linear dispersion or de-
creasing the nonlinear dependence of the frequency on the amplitude. The increase in the dispersion favors
the formation of coherence-type structures. In flows of an incompressible fluid, the increase in the dispersion
of Tollmien−Schlichting waves can be obtained by changing the composition of a moving medium and by
introducing high-molecular-weight compounds into the fluid. The behavior of the nonlinear interaction of the
waves can also be changed by decreasing the period length L or increasing considerably the amplitude of the
initial monochromatic perturbation. The numerical calculations of Eq. (18) indicated that in a linearly no-dis-

Fig. 3. Evolution of the envelope wave in the case of occurrence of tur-
bulence.

Fig. 4. Expansion of the wave packet when multimode instability develops
in the medium with α ≠ 0 for τ = 0 (a), 5 (b), 10 (c), 15 (d), and 20 (e).

Fig. 5. Development of the carrier-wave amplitude in the medium for
α1 = 0; α2 = 3; α3 = 0. t, sec.
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persion medium with a strong dependence of the phase on the amplitude the action of white noise on the
multimode turbulent regime can lead to the establishment of an ordered monochromatic regime or a limiting
cycle in the system. Figure 5 shows the evolution of the carrier-wave amplitude in the system with α11 =
α31 = 0, α2 = 3, and L = 50 in the absence of noise (curve 1) and in the presence of white noise (curve 2).
The self-organization of chaotic regimes under the action of white noise is explained by the fact that in non-
dispersion systems together with limiting cycles and chaotic attractors there are stable nodes that correspond
to monochromatic regimes. White noise favors the system getting into the domain of attraction of a stable
node.

As a result of the dispersion spreading of a wave packet, the propagation velocity of the fronts of a
localized wave packet in the dispersion media is higher than in nondispersion ones. With increase in the
wave-packet amplitude, the phase changes, owing to which the difference in the local wave numbers on the
wave-packet fronts from the wave number of the carrier wave grows, thus causing the self-constriction of the
wave packet similarly to that in conservative systems. The self-constriction that is manifested in a sharp in-
crease in the amplitude in the vicinity of the crest of the envelope wave leads to the appearance of narrow
needle-shaped wave packets of large amplitude. The large amplitude gradients on the fronts of the needle-
shaped wave packets cause the growth in the phase gradients resulting in the appearance of local decrements
and the attenuation of these packets. The evolution of the envelope wave in the systems for α11α2 < 0 is
determined by the dynamics of the appearance, growth, and attenuation of the needle-shaped wave packets in
which the main portion of the wave-motion energy is concentrated. In the systems with α11α2 < 0 the mono-
chromatic exponentially increasing solution is unstable. The development of instability is accompanied by the
appearance of separate peaks of large amplitude. Subsequently, in failure of these peaks turbulent spots are
formed that propagate to the entire wave packet. The individual stages of formation of a needle-shaped wave
packet, leading to the occurrence of a turbulent spot, and also the energy transfer over the spectrum are given
in Figs. 6 and 7. It should be noted that the occurrence of the turbulent spot is similar to the well-known

Fig. 6. Stage of the development of a turbulent spot from a needle-
shaped wave packet in the case of modulation instability.

Fig. 7. Evolution of the spectrum of wave numbers during the formation
of a needle-shaped wave packet and a turbulent spot in the medium with
linear attenuation.
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phenomenon, i.e., to the θ layer [4]. The difference lies in the fact that the occurrence of turbulent spots (as
follows from Figs. 6 and 7) is characteristic of both animate and inanimate nature. The pattern of develop-
ment of several turbulent spots is shown in Fig. 8.

Classification of supercritical regimes is one of the central problems of the theory of dissipative struc-
tures [16]. It allows one to separate individual substantial aspects of an object or phenomenon and to deter-
mine the conditions for transition between them.

The supercritical regimes, in which on many scales multiple and nonmultiple harmonics can consid-
erably affect the behavior pattern of the nonlinear systems on the attractor, are classified according to the
type of envelope wave, the spatial spectra of wave numbers, and the time frequency spectra of the amplitudes
and phases of individual harmonics [10].

Mechanism of Occurrence of Turbulence. As has been noted above, the envelope wave is a topo-
logical mapping of the nonlinear interaction of perturbations. For the multimode turbulence the envelope
wave is broken into wedge-shaped wave packets with rather large spatial and frequency spectra. The inhomo-
geneity in group velocity appears in the medium. The group velocity of short waves entering into the wave
packet is higher than that of the carrier wave itself, as a result of which the short waves overtake the carrier
wave and are concentrated on the leading edge of the wave packet. The group velocity of long waves is
lower than that of the carrier wave; therefore, the long waves are at the tail end of the wave packet. The
nonlinear long-term development of perturbations is investigated by the method of wave packets in the super-
critical region for the continuous band of the spectrum of wave numbers, and it is shown that waves of vari-
ous nature are formed on different sides of the carrier wave. Owing to the nonlinear interaction, each type of
waves forms attractors, including "strange" ones. We observe the interaction between the "strange" attractors.
Natural perturbations are wave packets [17] containing tens of modes, while the number of efficiently inter-
acting modes that appear at combined wave numbers in excitation of two modes is equal (for the nonlinear
dependence of the phase (frequency)) to tens and hundreds of modes. The number of modes increases in
geometric progression; therefore, the filling of the spectrum of wave numbers occurs very rapidly. Thus, tur-
bulence is a result of the interaction of a rather large number of "strange" attractors. This conclusion agrees
with the previously stated assumption of the mechanism of occurrence of turbulence [18, 19] and with the
results of experimental investigations of the turbulence in a round tube [20]. The mechanism proposed does
not contradict the existing models according to which large-scale perturbations (long waves at the tail end of
the wave packet) turn out to be unstable and produce perturbations with a small scale (short waves on the
leading edge of the wave packet). Since the concentration of waves at the wave-packet boundaries is some-

Fig. 8. Self-constriction of the wave packet that leads to the appearance
of needle-shaped wave packets, i.e., a system of turbulent spots. α1 = 4,
β1 = 0.
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thing material, the above fact is also in agreement with the conclusions given in [18, 19] that in the case of
the occurrence of turbulence the "quasiparticles" composing the "gas" of turbulence are of considerable im-
portance.

Thus, based on the analysis of the numerical solutions of a general nonlinear parabolic equation, we
have established the laws of occurrence of self-organization and turbulence. The conditions for the appearance
of turbulent spots and for the cancellation of turbulence by "white noise" have been shown. The mechanism
of occurrence of turbulence has been suggested.

This work was carried out with partial support from the Russian Foundation for Basic Research
(grant No. 00-02-18033).
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